Total factor productivity and the terms of trade

Jan Teresiński
European University Institute

8 October 2019

Motivation

- Terms of trade (TOT) - the ratio of export prices to import prices - is one of the most important drivers of business cycles in open economies

Motivation

- Terms of trade (TOT) - the ratio of export prices to import prices - is one of the most important drivers of business cycles in open economies
- Total factor productivity (TFP) is a key driving force of growth models and business cycles, often treated as exogenous

Motivation

- Terms of trade (TOT) - the ratio of export prices to import prices - is one of the most important drivers of business cycles in open economies
- Total factor productivity (TFP) is a key driving force of growth models and business cycles, often treated as exogenous
- In this paper I ask whether TFP in an open economy responds to changes in TOT and how this response can be explained

Research question and possible channels

Do changes in the terms of trade affect total factor productivity development?

Research question and possible channels

Do changes in the terms of trade affect total factor productivity development?

If TOT affect TFP, there can be two possible channels of influence:

Research question and possible channels

Do changes in the terms of trade affect total factor productivity development?

If TOT affect TFP, there can be two possible channels of influence:

- Substitutability channel: Given limited resources, improvements of TOT result in putting more resources in physical goods production at the expense of R\&D which slows down TFP growth

Research question and possible channels

Do changes in the terms of trade affect total factor productivity development?

If TOT affect TFP, there can be two possible channels of influence:

- Substitutability channel: Given limited resources, improvements of TOT result in putting more resources in physical goods production at the expense of R\&D which slows down TFP growth
- Complementarity channel: Improvements in TOT make the economy richer which allows to expand both physical goods production and R\&D activity

Research question and possible channels

Do changes in the terms of trade affect total factor productivity development?

If TOT affect TFP, there can be two possible channels of influence:

- Substitutability channel: Given limited resources, improvements of TOT result in putting more resources in physical goods production at the expense of R\&D which slows down TFP growth
- Complementarity channel: Improvements in TOT make the economy richer which allows to expand both physical goods production and R\&D activity

Empirical analysis supports the first channel - TOT gains slow down TFP growth

Related literature

- Endogenous growth literature: Romer $(1986,1990)$, Uzawa (1965), Lucas (1988)
- Open economy models, importance of terms of trade shocks: Mendoza (1995), Schmitt-Grohé and Uribe (2018)
- Empirical studies on TFP determinants:
- Macro evidence: Miller and Upadhyay (2000), Alcalá and Ciccone (2004), Kehoe and Ruhl (2008), Gopinath and Neiman (2014)
- Micro evidence: Galdon-Sanchez and Schmitz (2002) Schmitz (2005), Dunne, Klimek, and Schmitz (2010), Alfaro et al. (2017)
- Resource curse (the Dutch disease): Frankel (2010), Ploeg (2011), Benigno and Fornaro (2014)

Contribution

1. New empirical evidence on how TFP reacts to changes in TOT

- Macroeconomic evidence based on time series SVAR analysis
- Microeconomic evidence from industry data

2. Combining open economy models with endogenous growth theory to explain TFP reaction to TOT

- Exploring the substitutability between physical good production and R\&D

Macro evidence

- Bivariate VAR on time series of TFP and TOT
- Identification by long-run restrictions:
- shock to TFP as the only shock that has a long-run impact on TFP
- TOT shock has no long run effects on TFP

Macro evidence

- Bivariate VAR on time series of TFP and TOT
- Identification by long-run restrictions:
- shock to TFP as the only shock that has a long-run impact on TFP
- TOT shock has no long run effects on TFP
- OECD dataset, time span 1985-2016, annual frequency
- Country-specific for: Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, United Kingdom

Macro evidence

- Bivariate VAR on time series of TFP and TOT
- Identification by long-run restrictions:
- shock to TFP as the only shock that has a long-run impact on TFP
- TOT shock has no long run effects on TFP
- OECD dataset, time span 1985-2016, annual frequency
- Country-specific for: Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, United Kingdom
- Negative and significant response on impact for 9 out of 12 countries trade shares (spec

Impulse responses of TFP to TOT shocks $1 / 2$

Impulse responses of TFP to TOT shocks $2 / 2$

Micro evidence

- How does the industry level TFP respond to changes in TOT?

Micro evidence

- How does the industry level TFP respond to changes in TOT?
- TOT - the ratio of the index of export prices to the index of import prices (OECD database)
- TFP computed as Solow residual in production function of the real value added

Micro evidence

- How does the industry level TFP respond to changes in TOT?
- TOT - the ratio of the index of export prices to the index of import prices (OECD database)
- TFP computed as Solow residual in production function of the real value added
- Competitiveness Research Network (CompNet) firm-level based dataset
- 22 manufacturing industries
- 10 countries: Austria, Belgium, Estonia, Finland, Germany, Italy, Lithuania, Portugal, Slovenia and Spain ts
- Time span: 1996-2012 (unbalanced panel), annual frequency

```
dates spec
```


Regression results

Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	$\Delta T F P$	\triangle TFP	\triangle TFP	Δ TFP	\triangle TFP	Δ TFP	Δ TFP	$\Delta T F P$
$\triangle T O T$	$-.4923 * * *$	-.4935***	$-.4958 * * *$	-.3179***	-.4956***	$-.3198 * * *$	$-.2857 * * *$	$-.2866 * * *$
	(.0550)	(.0543)	(.0579)	(.0718)	(.0576)	(.0708)	(. 0783)	(.0770)
Sector dummies	NO	YES	NO	NO	YES	YES	NO	YES
Country dummies	NO	NO	YES	NO	YES	NO	YES	YES
Year dummies	NO	NO	NO	YES	NO	YES	YES	YES
Mean TFP	62.0282	62.0282	62.0282	62.0282	62.0282	62.0282	62.0282	62.0282
Number of obs.	2591	2591	2591	2591	2591	2591	2591	2591
R^{2}	0.0296	0.0599	0.0482	0.0808	0.0802	0.1127	0.0989	0.0766
	Standard deviation in parenthesis. Legend: ${ }^{*} p<0.05 ;{ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$							

TOT improvements associated with reductions of changes in TFP

Regression results - robustness

Sample	Manufact	All	Non-manufact	Manufact	Manufact
Model	(8)	(9)	(10)	(11)	(12)
	Δ TFP				
Δ TOT	$-.2866^{* * *}$	$-.1019^{*}$.0193	$-.2924^{* * *}$.1562
	$(.0770)$	$(.0509)$	$(.0671)$	$(.0772)$	$(.1307)$
Share of exporters				$7.0555^{* * *}$	$6.8286^{* * *}$
				(1.5989)	(1.5944)
Share of exporters					$-1.2193^{* * *}$
$\times \Delta$ TOT				$(.2870)$	
Sector dummies	YES	YES	YES	YES	YES
Country dummies	YES	YES	YES	YES	YES
Year dummies	YES	YES	YES	YES	YES
Mean TFP	62.0282	55.8045	51.4509	62.3931	62.3931
Number of obs.	2591	6295	3704	2563	2563
R^{2}	0.0766	0.0678	0.0340	0.1390	0.1452

Standard deviation in parenthesis. ${ }^{*} p<0.05 ;{ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$

Model outline

- When MXN model meets endogenous growth theory
- Small open economy
- Three types of goods:
- Importable (M)
- Exportable (X) X
- Non-tradable (N) N

Model outline

- When MXN model meets endogenous growth theory
- Small open economy
- Three types of goods:
- Importable (M)
- Exportable (X)
- Non-tradable (N)
- Separate technology producing (R\&D) sector
- TFP developed by the R\&D producer is used by all sectors (common TFP level)
- Importable good price as numeraire

Households

At time t choose:

- consumption c_{t}

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector
- level of debt d_{t+1} subject to no Ponzi scheme

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector
- level of debt d_{t+1} subject to no Ponzi scheme
to maximize lifetime utility subject to the budget constraint

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector
- level of debt d_{t+1} subject to no Ponzi scheme
to maximize lifetime utility subject to the budget constraint
- earning wages $w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}$ for work in the respective industries

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector
- level of debt d_{t+1} subject to no Ponzi scheme
to maximize lifetime utility subject to the budget constraint
- earning wages $w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}$ for work in the respective industries
- and rents for capital services $r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}$ to the respective industries

Households

At time t choose:

- consumption c_{t}
- labor supply to importables I_{t}^{m}, exportables I_{t}^{x} and nontradables I_{t}^{n} and knowledge production h_{t} sector
- capital supply to importables k_{t+1}^{m}, exportables k_{t+1}^{x} and nontradables k_{t+1}^{n} production sector
- level of debt d_{t+1} subject to no Ponzi scheme
to maximize lifetime utility subject to the budget constraint
- earning wages $w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}$ for work in the respective industries
- and rents for capital services $r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}$ to the respective industries One-period utility function:

$$
U\left(c, I^{m}, I^{x}, I^{n}, h\right)=\frac{\left[c-L\left(I^{m}, I^{x}, I^{n}, h\right)\right]^{1-\sigma}-1}{1-\sigma}
$$

where

$$
L\left(I^{m}, I^{x}, I^{n}, h\right)=\frac{\left(I^{m}\right)^{\omega_{m}}}{\omega_{m}}+\frac{\left(I^{x}\right)^{\omega_{x}}}{\omega_{x}}+\frac{\left(I^{n}\right)^{\omega_{n}}}{\omega_{n}}+\frac{(h)^{\omega_{h}}}{\omega_{h}}
$$

Firms producing exportable goods

Profit maximization:

$$
\max _{\left\{l_{t}^{x}, k_{t}^{x}\right\}} \operatorname{tot}_{t} y_{t}^{x}-\left.w_{t}^{x}\right|_{t} ^{x}-r_{t}^{k x} k_{t}^{x}
$$

subject to

$$
\begin{equation*}
y_{t}^{x}=A_{t} z_{t} F^{x}\left(k_{t}^{x},\left.\right|_{t} ^{x}\right) \tag{1}
\end{equation*}
$$

First order conditions:

$$
\begin{array}{ll}
{\left[l_{t}^{x}:\right]} & \operatorname{tot}_{t} A_{t} z_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)=w_{t}^{x} \\
{\left[k_{t}^{x}:\right]} & \operatorname{tot}_{t} A_{t} z_{t} F_{1}^{x}\left(k_{t}^{x},\left.\right|_{t} ^{x}\right)=r_{t}^{k x} \tag{3}
\end{array}
$$

Technology producers

Profit maximization

$$
\max _{\left\{A_{t+1}, h_{t}^{\times}\right\}}\left\{\quad E_{0} \sum_{t=0}^{\infty} \prod_{i=0}^{t-1} \frac{1}{1+r_{i}}\left(A_{t+1}-s_{t} h_{t}\right) \quad\right\}
$$

subject to

$$
\begin{equation*}
A_{t+1}-A_{t}=B A_{t} z_{t} h_{t}^{\gamma} \tag{4}
\end{equation*}
$$

First order condition:

$$
\begin{equation*}
\left[h_{t}:\right] \quad B A_{t} z_{t} \gamma h_{t}^{\gamma-1}=s_{t} \tag{5}
\end{equation*}
$$

Terms of trade process

Terms of trade process

$$
\ln \frac{t o t_{t}}{\overline{t o t}}=\rho \ln \frac{t o t_{t-1}}{\overline{t o t}}+\sigma_{t o t} \varepsilon_{t}
$$

where

- $\overline{t o t}>0$ is the deterministic level of the terms of trade
- $\rho \in(-1,1)$ is the serial correlation of the process
- $\sigma_{\text {tot }}>0$ is the standard deviation of the innovation to the terms of trade
with estimated $\rho=0.46, \sigma_{\text {tot }}=0.0166, R^{2}=0.26$

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{\times}}=\lambda_{t} w_{t}^{x}
\end{aligned}
$$

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{x}}=\lambda_{t} w_{t}^{x}
\end{aligned}
$$

we have that

$$
\lambda_{t}=-\frac{U_{h_{t}}}{s_{t}}=-\frac{U_{I_{t}^{X}}}{w_{t}^{X}}
$$

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{\times}}=\lambda_{t} w_{t}^{\times}
\end{aligned}
$$

we have that

$$
\lambda_{t}=-\frac{U_{h_{t}}}{s_{t}}=-\frac{U_{l_{t}}}{w_{t}^{x}}
$$

Using producers' FOC we substitute out the wages:

$$
-\frac{U_{h_{t}}}{B A_{t} \gamma h_{t}^{\gamma-1}}=-\frac{U_{I_{t}^{x}}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)}
$$

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{\times}}=\lambda_{t} w_{t}^{\times}
\end{aligned}
$$

we have that

$$
\lambda_{t}=-\frac{U_{h_{t}}}{s_{t}}=-\frac{U_{l_{t}}}{w_{t}^{x}}
$$

Using producers' FOC we substitute out the wages:

$$
-\frac{U_{h_{t}}}{B A_{t} \gamma h_{t}^{\gamma-1}}=-\frac{U_{L_{t}^{x}}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)}
$$

As tot goes up, RHS goes down

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{\times}}=\lambda_{t} w_{t}^{\times}
\end{aligned}
$$

we have that

$$
\lambda_{t}=-\frac{U_{h_{t}}}{s_{t}}=-\frac{U_{l_{t}^{x}}}{w_{t}^{X}}
$$

Using producers' FOC we substitute out the wages:

$$
-\frac{U_{h_{t}}}{B A_{t} \gamma h_{t}^{\gamma-1}}=-\frac{U_{L_{t}^{x}}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)}
$$

As tot goes up, RHS goes down \Longrightarrow LHS needs to go down

Mechanism - intuition

By households first order conditions:

$$
\begin{aligned}
& -U_{h_{t}}=\lambda_{t} s_{t} \\
& -U_{l_{t}^{\times}}=\lambda_{t} w_{t}^{x}
\end{aligned}
$$

we have that

$$
\lambda_{t}=-\frac{U_{h_{t}}}{s_{t}}=-\frac{U_{l_{t}^{x}}}{w_{t}^{X}}
$$

Using producers' FOC we substitute out the wages:

$$
-\frac{U_{h_{t}}}{B A_{t} \gamma h_{t}^{\gamma-1}}=-\frac{U_{l_{t}^{\times}}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{\times}, I_{t}^{x}\right)}
$$

As tot goes up, RHS goes down \Longrightarrow LHS needs to go down
$\Longrightarrow h_{t}$ needs to fall with functional forms derivation

Quantitative analysis

- Analysis of impulse responses of theoretical model variables to the terms of trade shock
- Functional forms: GHH preferences, Cobb-Douglas production function, CES aggregator of composite goods functions
- Standard calibration of the MXN model following Schmitt-Grohé and Uribe (2018) adjusted for the analyzed countries calibration

Model performance: impulse responses $1 / 2$

Model performance: impulse responses $2 / 2$

Model performance - matching moments

Statistic	Data	Model
Targeted moments		
Average share of import in total trade	49.01%	48.54%
Average trade share of nontradables in GDP	62.71%	62.35%
Average trade balance share in GDP	2.38%	2.33%

Non-targeted moments

Standard deviation output	2.71%	3.70%
Autocorrelation output	0.76	0.79
Standard deviation TFP	1.57%	0.99%
Autocorrelation TFP	0.72	0.73
Standard deviation R\&D spending	3.70%	3.06%
Autocorrelation R\&D spending	0.70	0.82
Correlation output vs. TFP	0.71	0.79
Correlation output vs. R\&D	0.31	0.83

Conclusions

- In this paper I study how changes in the terms of trade affect total factor productivity
- Empirical evidence both on micro and macro level suggests that changes in TFP decrease as a response to an increase in TOT
- Theoretical model shows that TOT gains increase employment in physical goods production at the expense of labor in technological sector
- This results in less resources employed in knowledge production and slows down the TFP growth

Thank you!

Trade in GDP

Country	Average share of exports+imports in GDP over 1985-2016
Austria	83.46
Belgium	134.73
Denmark	81.97
Estonia	143.01^{*}
Finland	66.54
France	49.93
Germany	61.41
Ireland	150.78
Italy	46.73
Lithuania	117.08^{*}
Netherlands	121.25
Portugal	65.32
Slovenia	118.99^{*}
Spain	49.81
Sweden	74.66
United Kingdom	52.18

* over the period 1995-2016

Source: World Development Indicators

SVAR specification

$$
\left[\begin{array}{c}
T F P_{t} \\
{T O T_{t}}_{t}
\end{array}\right]=\left[\begin{array}{ll}
\psi_{11}(L) & \psi_{12}(L) \\
\psi_{21}(L) & \psi_{22}(L)
\end{array}\right]\left[\begin{array}{c}
\epsilon_{t}^{T F P} \\
\epsilon_{t}^{T O T}
\end{array}\right]
$$

SVAR specification

$$
\left[\begin{array}{c}
T F P_{t} \\
{T O T_{t}}_{t}
\end{array}\right]=\left[\begin{array}{ll}
\psi_{11}(L) & \psi_{12}(L) \\
\psi_{21}(L) & \psi_{22}(L)
\end{array}\right]\left[\begin{array}{c}
\epsilon_{t}^{T F P} \\
\epsilon_{t}^{T O T}
\end{array}\right]
$$

where
$T F P_{t}$ is total factor productivity,
$T O T_{t}$ are the terms of trade,
$\psi_{i i}(L)$ are polynomials of the lag operator,
$\epsilon_{t}^{T F P}$ is a structural TFP shock,
$\epsilon_{t}^{T O T}$ is a structural terms-of-trade shock

SVAR specification

$$
\left[\begin{array}{l}
T F P_{t} \\
T O T_{t}
\end{array}\right]=\left[\begin{array}{ll}
\psi_{11}(L) & \psi_{12}(L) \\
\psi_{21}(L) & \psi_{22}(L)
\end{array}\right]\left[\begin{array}{c}
\epsilon_{t}^{T F P} \\
\epsilon_{t}^{T O T}
\end{array}\right]
$$

where
$T F P_{t}$ is total factor productivity,
$T O T_{t}$ are the terms of trade,
$\psi_{i i}(L)$ are polynomials of the lag operator,
$\epsilon_{t}^{T F P}$ is a structural TFP shock,
$\epsilon_{t}^{T O T}$ is a structural terms-of-trade shock
Assumption: shocks are orthogonal and serially uncorrelated.

SVAR specification

$$
\left[\begin{array}{c}
T F P_{t} \\
{T O T_{t}}_{t}
\end{array}\right]=\left[\begin{array}{ll}
\psi_{11}(L) & \psi_{12}(L) \\
\psi_{21}(L) & \psi_{22}(L)
\end{array}\right]\left[\begin{array}{c}
\epsilon_{t}^{T F P} \\
\epsilon_{t}^{T O T}
\end{array}\right]
$$

where
$T F P_{t}$ is total factor productivity,
$T O T_{t}$ are the terms of trade,
$\psi_{i i}(L)$ are polynomials of the lag operator,
$\epsilon_{t}^{T F P}$ is a structural TFP shock,
$\epsilon_{t}^{T O T}$ is a structural terms-of-trade shock
Assumption: shocks are orthogonal and serially uncorrelated.
Our LR restriction corresponds to $\psi_{12}(1)=0$

```
back
```


Regression specification

$$
\Delta T F P_{s c t}=\alpha+\beta \Delta T O T_{c t}+\eta_{s}+\nu_{c}+\gamma_{t}+\varepsilon_{s c t}
$$

where

- TFP $_{\text {sct }}$ is the total factor productivity in time t, sector s and country c
- $T O T_{c t}$ are the terms of trade in time t and country c
- η_{s} captures the sector fixed effect
- ν_{c} captures the country fixed effect
- γ_{t} captures the time fixed effect
- $\varepsilon_{\text {sct }}$ is the error term

Impulse responses of TFP to TOT shocks in Belgium

Belgium

Impulse responses of TFP to TOT shocks in Denmark

Denmark

Impulse responses of TFP to TOT shocks in Finland

Finland

Impulse responses of TFP to TOT shocks in France

France

Impulse responses of TFP to TOT shocks in Germany

Germany

Impulse responses of TFP to TOT shocks in Ireland

Ireland

Impulse responses of TFP to TOT shocks in Italy

Impulse responses of TFP to TOT shocks in Netherlands

Netherlands

Impulse responses of TFP to TOT shocks in Portugal

Portugal

Impulse responses of TFP to TOT shocks in Spain Spain

Impulse responses of TFP to TOT shocks in Sweden

Sweden

Impulse responses of TFP to TOT shocks in the United Kingdom

Regression results - all sectors

Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	$\Delta \mathrm{TFP}$							
$\Delta \mathrm{TOT}$	$-.2894^{* * *}$	$-.2861^{* * *}$	$-.3076^{* * *}$	$-.1081^{*}$	$-.3069^{* * *}$	$-.1057^{*}$	$-.1022^{*}$	$-.1019^{*}$
	$(.0359)$	$(.0356)$	$(.0379)$	$(.0467)$	$(.0376)$	$(.0463)$	$(.0513)$	$(.0509)$
Sector dummies	NO	YES	NO	NO	YES	YES	NO	YES
Country dummies	NO	NO	YES	NO	YES	NO	YES	YES
Year dummies	NO	NO	NO	YES	NO	YES	YES	YES

Improvements in TOT tend to reduce changes in TFP

```
back
```


Time span for different countries in micro sample

country	years
Austria	$2001-2012$
Belgium	$1997-2011$
Estonia	$1996-2012$
Finland	$2000-2012$
Germany	$1998-2012$
Italy	$2002-2012$
Lithuania	$2001-2011$
Slovenia	$1996-2012$
Portugal	$2007-2012$
Spain	$1996-2012$

Manufacturing industries

```
Manufacture of food products
Manufacture of beverages
Manufacture of tobacco products
Manufacture of textiles
Manufacture of wearing apparel
Manufacture of leather and related products
Manufacture of wood and of products of wood and cork, except furniture;
manufacture of articles of straw and plaiting materials
Manufacture of paper and paper products
Printing and reproduction of recorded media
Manufacture of chemicals and chemical products
Manufacture of basic pharmaceutical products and pharmaceutical preparations
Manufacture of rubber and plastic products
Manufacture of other nonmetallic mineral products
Manufacture of basic metals
Manufacture of fabricated metal products, except machinery and equipment
Manufacture of computer, electronic and optical products
Manufacture of electrical equipment
Manufacture of machinery and equipment
Manufacture of motor vehicles, trailers and semitrailers
Manufacture of other transport equipment
Manufacture of furniture
Other manufacturing
```


Non-manufacturing industries

```
Repair and installation of machinery and equipment
Construction of buildings
Civil engineering
Specialised construction activities
Wholesale and retail trade and repair of motor vehicles and motorcycles
Wholesale trade, except of motor vehicles and motorcycles
Retail trade, except of motor vehicles and motorcycles
Land transport and transport via pipelines
Water transport
Air transport
Warehousing and support activities for transportation
Postal and courier activities
Accommodation
Food and beverage service activities
Publishing activities
Motion picture, video and television programme production, sound recording and music publishing activities
Programming and broadcasting activities
Telecommunications
Computer programming, consultancy and related activities
Information service activities
Real estate activities
Legal and accounting activities
Activities of head offices; management consultancy activities
Architectural and engineering activities; technical testing and analysis
Scientific research and development
Advertising and market research
Other professional, scientific and technical activities
Veterinary activities
Rental and leasing activities
Employment activities
Travel agency, tour operator and other reservation service and related activities
Security and investigation activities
Services to buildings and landscape activities
Office administrative, office support and other business support activities

\section*{R\&D channel - regression}
\begin{tabular}{|c|c|c|c|c|}
\hline Country & Regression coefficient & Standard error & \(R^{2}\) & Sample period \\
\hline Belgium & 0.1729 & 1.2130 & 0.0009 & \(1993-2016\) \\
Denmark & -0.8980 & 1.0650 & 0.0483 & \(2001-2016\) \\
Finland & \(-1.6031^{* *}\) & 0.5321 & 0.2323 & \(1985-2016\) \\
France & 0.5047 & 0.2476 & 0.1217 & \(1985-2016\) \\
Germany & -0.2844 & 0.2231 & 0.0514 & \(1985-2016\) \\
Ireland & -0.8496 & 0.5512 & 0.0734 & \(1985-2016\) \\
Italy & 0.3336 & 0.2688 & 0.0488 & \(1985-2016\) \\
Netherlands & -0.1765 & 0.4769 & 0.0045 & \(1985-2016\) \\
Portugal & -1.7011 & 0.8601 & 0.1154 & \(1985-2016\) \\
Spain & \(0.9430^{*}\) & 0.4534 & 0.1260 & \(1985-2016\) \\
Sweden & -0.9075 & 1.3203 & 0.0379 & \(2003-2016\) \\
United Kingdom & 0.2211 & 0.4163 & 0.0093 & \(1985-2016\) \\
\hline
\end{tabular}

\section*{R\&D channel}

Germany


\section*{R\&D channel - correlations}
\begin{tabular}{|c|c|c|}
\hline Country & \begin{tabular}{c} 
Correlation \(\Delta \log\) R\&D \\
with \(\Delta \log\) TOT
\end{tabular} & Sample period \\
\hline Belgium & -0.3968 & \(1993-2016\) \\
Denmark & -0.1371 & \(2001-2016\) \\
Finland & -0.1592 & \(1985-2016\) \\
France & 0.0021 & \(1985-2016\) \\
Germany & -0.3154 & \(1985-2016\) \\
Ireland & -0.1721 & \(1985-2016\) \\
Italy & 0.1228 & \(1985-2016\) \\
Netherlands & -0.1645 & \(1985-2016\) \\
Portugal & -0.0426 & \(1985-2016\) \\
Spain & 0.4959 & \(1985-2016\) \\
Sweden & -0.2364 & \(2003-2016\) \\
United Kingdom & 0.0414 & \(1985-2016\) \\
\hline
\end{tabular}

\section*{Households - maximization problem}
\[
\max _{\left\{c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{\eta}, h_{t}, k_{t+1}^{m}, k_{t+1}^{x}, k_{t+1}^{n}, d_{t+1},\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}\right)
\]
subject to

\section*{Households - maximization problem}
\[
\max _{\left\{c_{t}, l_{t}^{m}, l_{t}^{x}, l^{n}, h_{t}, k_{t+1}^{m}, k_{t+1}^{x}, k_{t+1}^{n}, d_{t+1},\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}\right)
\]
subject to
\(p_{t}^{f} c_{t}+p_{t}^{\tau} d_{t}+p_{t}^{f}\left[k_{t+1}^{m}+k_{t+1}^{\times}+k_{t+1}^{n}+\Phi_{m}\left(k_{t+1}^{m}-k_{t}^{m}\right)+\Phi_{x}\left(k_{t+1}^{\times}-k_{t}^{\times}\right)+\Phi_{n}\left(k_{t+1}^{n}-k_{t}^{n}\right)\right]\)
\(=p_{t}^{\tau} \frac{d_{t+1}}{1+r_{t}}+\left(1-\tau_{t}\right)\left(w_{t}^{m} l_{t}^{m}+w_{t}^{\times} \mid x_{t}^{\times}+w_{t}^{n} / l_{t}^{n}\right)+s_{t} h_{t}+r_{t}^{k m} k_{t}^{m}+r_{t}^{k \times} k_{t}^{\times}+r_{t}^{k n} k_{t}^{n}+p_{t}^{f}(1-\delta)\left(k_{t}^{m}+k_{t}^{\times}+k_{t}^{n}\right)\)

\section*{Households - maximization problem}
\[
\max _{\left\{c_{t}, l_{t}^{m}, l_{t}^{x}, l^{n}, h_{t}, k_{t+1}^{m}, k_{t+1}^{x}, k_{t+1}^{n}, d_{t+1},\right\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}\right)
\]
subject to
\(p_{t}^{f} \mathcal{c}_{t}+p_{t}^{\tau} d_{t}+p_{t}^{f}\left[k_{t+1}^{m}+k_{t+1}^{\times}+k_{t+1}^{n}+\Phi_{m}\left(k_{t+1}^{m}-k_{t}^{m}\right)+\Phi_{x}\left(k_{t+1}^{\times}-k_{t}^{\times}\right)+\Phi_{n}\left(k_{t+1}^{n}-k_{t}^{n}\right)\right]\)
\(=p_{t}^{\tau} \frac{d_{t+1}}{1+r_{t}}+\left(1-\tau_{t}\right)\left(w_{t}^{m} l_{t}^{m}+w_{t}^{\times} \mid x_{t}^{\times}+w_{t}^{n} / l_{t}^{n}\right)+s_{t} h_{t}+r_{t}^{k m} k_{t}^{m}+r_{t}^{k \times} k_{t}^{\times}+r_{t}^{k n} k_{t}^{n}+p_{t}^{f}(1-\delta)\left(k_{t}^{m}+k_{t}^{\times}+k_{t}^{n}\right)\)
\[
\lim _{T \rightarrow \infty}\left(\prod_{i=0}^{T-1}\left(1+r_{i}\right)^{-1}\right) \frac{d_{T+1}}{1+r_{T}}=0
\]

\section*{Households - first order conditions}
\[
\begin{equation*}
\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t} p^{f} \tag{6}
\end{equation*}
\]

\section*{Households - first order conditions}
\[
\begin{gather*}
{\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} p^{f}}  \tag{6}\\
{\left[l_{t}^{m}:\right] \quad-U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}} \tag{7}
\end{gather*}
\]

\section*{Households - first order conditions}
\[
\begin{gather*}
{\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} p^{f}}  \tag{6}\\
{\left[l_{t}^{m}:\right] \quad-U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
{\left[l_{t}^{x}:\right]} \tag{8}
\end{gather*}-U_{3}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{\times} .
\]

\section*{Households - first order conditions}
\[
\begin{array}{cc} 
& {\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} p^{f}} \\
{\left[l_{t}^{m}:\right]} & -U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m} \\
{\left[l_{t}^{x}:\right]} & -U_{3}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{\times} \\
{\left[l_{t}^{n}:\right]} & -U_{4}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n} \tag{9}
\end{array}
\]

\section*{Households - first order conditions}
\[
\begin{gather*}
{\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} p^{f}}  \tag{6}\\
{\left[I_{t}^{m}:\right]-U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
{\left[I_{t}^{\times}:\right]-U_{3}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{\times}}  \tag{8}\\
{\left[I_{t}^{n}:\right]-U_{4}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n}}  \tag{9}\\
{\left[h_{t}^{\times}:\right] \quad-U_{5}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} s_{t}^{\times}} \tag{10}
\end{gather*}
\]

\section*{Households - first order conditions}
\[
\begin{gather*}
{\left[c_{t}:\right] \quad U_{1}\left(c_{t}, I_{t}^{m}, I_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t} p^{f}}  \tag{6}\\
{\left[I_{t}^{m}:\right] \quad-U_{2}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
{\left[I_{t}^{x}:\right]-U_{3}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{x}}  \tag{8}\\
{\left[I_{t}^{n}:\right]-U_{4}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n}}  \tag{9}\\
{\left[h_{t}^{x}:\right] \quad-U_{5}\left(c_{t}, l_{t}^{m}, I_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t} s_{t}^{x}} \tag{10}
\end{gather*}
\]
\(\left[k_{t+1}^{m}:\right] \quad \lambda_{t}\left[1+\Phi_{m}^{\prime}\left(k_{t+1}^{m}-k_{t}^{m}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k m}+\left(1-\delta+\Phi_{m}^{\prime}\left(k_{t+2}^{m}-k_{t+1}^{m}\right)\right) p_{t+1}^{f}\right]\)

\section*{Households - first order conditions}
\[
\begin{gather*}
{\left[c_{t}:\right] \quad U_{1}\left(c_{t}, I_{t}^{m}, I_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t} p^{f}}  \tag{6}\\
{\left[I_{t}^{m}:\right] \quad-U_{2}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
{\left[I_{t}^{x}:\right]-U_{3}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{x}}  \tag{8}\\
{\left[I_{t}^{n}:\right]-U_{4}\left(c_{t}, I_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n}}  \tag{9}\\
{\left[h_{t}^{x}:\right] \quad-U_{5}\left(c_{t}, l_{t}^{m}, I_{t}^{x}, I_{t}^{n}, h_{t}^{x}\right)=\lambda_{t} s_{t}^{x}} \tag{10}
\end{gather*}
\]
\(\left[k_{t+1}^{m}:\right] \quad \lambda_{t}\left[1+\Phi_{m}^{\prime}\left(k_{t+1}^{m}-k_{t}^{m}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k m}+\left(1-\delta+\Phi_{m}^{\prime}\left(k_{t+2}^{m}-k_{t+1}^{m}\right)\right) p_{t+1}^{f}\right]\)
\(\left[k_{t+1}^{x}:\right] \quad \lambda_{t}\left[1+\Phi_{x}^{\prime}\left(k_{t+1}^{x}-k_{t}^{x}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k \times}+\left(1-\delta+\Phi_{x}^{\prime}\left(k_{t+2}^{x}-k_{t+1}^{x}\right)\right) p_{t+1}^{f}\right]\)

\section*{Households - first order conditions}
\(\left[k_{t+1}^{m}:\right] \quad \lambda_{t}\left[1+\Phi_{m}^{\prime}\left(k_{t+1}^{m}-k_{t}^{m}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k m}+\left(1-\delta+\Phi_{m}^{\prime}\left(k_{t+2}^{m}-k_{t+1}^{m}\right)\right) p_{t+1}^{f}\right]\)
\[
\begin{equation*}
\left[k_{t+1}^{\times}:\right] \quad \lambda_{t}\left[1+\Phi_{x}^{\prime}\left(k_{t+1}^{\times}-k_{t}^{\times}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k \times}+\left(1-\delta+\Phi_{x}^{\prime}\left(k_{t+2}^{\times}-k_{t+1}^{\times}\right)\right) p_{t+1}^{f}\right] \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
\left[k_{t+1}^{n}:\right] \quad \lambda_{t}\left[1+\Phi_{n}^{\prime}\left(k_{t+1}^{n}-k_{t}^{n}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k n}+\left(1-\delta+\Phi_{n}^{\prime}\left(k_{t+2}^{n}-k_{t+1}^{n}\right)\right) p_{t+1}^{f}\right] \tag{12}
\end{equation*}
\]
\[
\begin{align*}
& \text { [ } c_{t} \text { :] } U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\chi}, l_{t}^{p}, h_{t}^{\chi}\right)=\lambda_{t} p^{f}  \tag{6}\\
& {\left[l_{t}^{m}:\right]-U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
& {\left[l_{t}^{\times}:\right] \quad-U_{3}\left(c_{t}, l_{t}^{m}, \iota_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{\times}}  \tag{8}\\
& {\left[l_{t}^{n}:\right] \quad-U_{4}\left(c_{t}, l_{t}^{m}, t_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n}}  \tag{9}\\
& {\left[h_{t}^{\times}:\right] \quad-U_{5}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} s_{t}^{\times}} \tag{10}
\end{align*}
\]

\section*{Households - first order conditions}
\(\left[k_{t+1}^{m}:\right] \quad \lambda_{t}\left[1+\Phi_{m}^{\prime}\left(k_{t+1}^{m}-k_{t}^{m}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k m}+\left(1-\delta+\Phi_{m}^{\prime}\left(k_{t+2}^{m}-k_{t+1}^{m}\right)\right) p_{t+1}^{f}\right]\)
\[
\begin{equation*}
\left[k_{t+1}^{\times}:\right] \quad \lambda_{t}\left[1+\Phi_{x}^{\prime}\left(k_{t+1}^{\times}-k_{t}^{\times}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k \times}+\left(1-\delta+\Phi_{x}^{\prime}\left(k_{t+2}^{\times}-k_{t+1}^{\times}\right)\right) p_{t+1}^{f}\right] \tag{11}
\end{equation*}
\]
\[
\begin{equation*}
\left[k_{t+1}^{n}:\right] \quad \lambda_{t}\left[1+\Phi_{n}^{\prime}\left(k_{t+1}^{n}-k_{t}^{n}\right)\right] p_{t}^{f}=\beta E_{t} \lambda_{t+1}\left[r_{t+1}^{k n}+\left(1-\delta+\Phi_{n}^{\prime}\left(k_{t+2}^{n}-k_{t+1}^{n}\right)\right) p_{t+1}^{f}\right] \tag{12}
\end{equation*}
\]
\[
\begin{equation*}
\left[d_{t+1}:\right] \quad \lambda_{t} p_{t}^{\tau}=\beta\left(1+r_{t}\right) E_{t} \lambda_{t+1} p_{t+1}^{\tau} \tag{13}
\end{equation*}
\]
\[
\begin{align*}
& {\left[c_{t}:\right] \quad U_{1}\left(c_{t}, l_{t}^{m}, l_{t}^{\chi}, l_{t}^{n}, h_{t}^{\chi}\right)=\lambda_{t} p^{f}}  \tag{6}\\
& {\left[l_{t}^{m}:\right]-U_{2}\left(c_{t}, l_{t}^{m}, l_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{m}}  \tag{7}\\
& {\left[l_{t}^{x}:\right] \quad-U_{3}\left(c_{t}, l_{t}^{m}, \iota_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{\times}}  \tag{8}\\
& {\left[l_{t}^{n}:\right] \quad-U_{4}\left(c_{t}, l_{t}^{m}, t_{t}^{x}, l_{t}^{n}, h_{t}^{x}\right)=\lambda_{t}\left(1-\tau_{t}\right) w_{t}^{n}}  \tag{9}\\
& {\left[h_{t}^{\times}:\right] \quad-U_{5}\left(c_{t}, l_{t}^{m}, l_{t}^{\times}, l_{t}^{n}, h_{t}^{\times}\right)=\lambda_{t} s_{t}^{\times}} \tag{10}
\end{align*}
\]

\section*{Firms producing importable goods}

Profit maximization:
\[
\max _{\left\{l_{t}^{m}, k_{t}^{m}\right\}} y_{t}^{m}-w_{t}^{m} I_{t}^{m}-r_{t}^{k m} k_{t}^{m}
\]
subject to
\[
y_{t}^{m}=A_{t} z_{t} F^{m}\left(k_{t}^{m}, I_{t}^{m}\right)
\]

First order conditions:
\[
\begin{array}{ll}
{\left[I_{t}^{m}:\right]} & A_{t} F_{2}^{m}\left(k_{t}^{m}, I_{t}^{m}\right)=w_{t}^{m} \\
{\left[k_{t}^{m}:\right]} & A_{t} F_{1}^{m}\left(k_{t}^{m}, I_{t}^{m}\right)=r_{t}^{k m}
\end{array}
\]

\section*{Firms producing nontradable goods}

Profit maximization:
\[
\max _{\left\{l_{t}^{11}, k_{t}^{n}\right\}} p_{t}^{n} y_{t}^{n}-w_{t}^{n} l_{t}^{n}-r_{t}^{k n} k_{t}^{n}
\]
subject to
\[
y_{t}^{n}=A_{t} z_{t} F^{n}\left(k_{t}^{n}, I_{t}^{n}\right)
\]

First order conditions:
\[
\begin{array}{ll}
{\left[I_{t}^{n}:\right]} & p_{t}^{n} A_{t} F_{2}^{n}\left(k_{t}^{n}, I_{t}^{n}\right)=w_{t}^{n} \\
{\left[k_{t}^{n}:\right]} & p_{t}^{n} A_{t} F_{1}^{n}\left(k_{t}^{n}, I_{t}^{n}\right)=r_{t}^{k n}
\end{array}
\]

\section*{Exporting, R\&D, innovation and productivity}
- Bishop and Wiseman (1999): involvement in export markets has a positive impact on innovation
- Criscuolo et. al. (2010): exporters have more innovation outputs than non-exporters due to higher R\&D
- Aw et. al. (2011): exporting boosts productivity; exporting firms investing in R\&D having higher productivity compared to exporters not investing in R\&D
- Harris (2011): in both manufacturing and services, being involved in exporting increases the probability that a firm was engaged in spending on R\&D

\section*{Growth rate of the technology}

Since
\[
A_{t+1}-A_{t}=B A_{t}^{\theta} h_{t}^{\gamma}
\]

Then the growth rate of the technology is given by
\[
g_{t}^{A}=\frac{A_{t+1}-A_{t}}{A_{t}}=B A_{t}^{\theta-1} h_{t}^{\gamma}
\]

Itself grows at
\[
\frac{g_{t+1}^{A}-g_{t}^{A}}{g_{t}^{A}}=\gamma n+(\theta-1) g_{t}^{A}
\]
where \(n=\frac{h_{t+1}-h_{t}}{h_{t}}\). To have a stable growth path, i.e., \(\frac{g_{t+1}^{A}-g_{t}^{A}}{g_{t}^{A}}=0\) which is positive we need either \(n=0\) and \(\theta=1\) or \(\theta<1\) for \(n>0\). In the latter case
\[
g_{t}^{A}=\frac{\gamma n}{1-\theta}
\]

\section*{Effects of TOT on TFP}
\[
s_{t}=\frac{U_{h_{t}}}{U_{l_{t}^{x}}} t o t_{t} A_{t} z_{t} F_{2}^{x}\left(k_{t}^{x}, I_{t}^{x}\right)
\]

\section*{Effects of TOT on TFP}
\[
s_{t}=\frac{U_{h_{t}}}{U_{l_{t}^{x}}} \operatorname{tot}_{t} A_{t} z_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)
\]

By TFP production function:
\[
h_{t}=\left(\frac{s_{t}}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}=\left(\frac{\frac{U_{h_{t}}}{U_{t}^{x}} t o t_{t} A_{t} z_{t} F_{2}^{\times}\left(k_{t}^{\times},| |_{t}^{\chi}\right)}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}
\]

\section*{Effects of TOT on TFP}
\[
s_{t}=\frac{U_{h_{t}}}{U_{l_{t}^{x}}} \operatorname{tot}_{t} A_{t} z_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)
\]

By TFP production function:
\[
\begin{aligned}
& h_{t}=\left(\frac{s_{t}}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}=\left(\frac{\frac{U_{h_{t}}}{U_{1_{t}^{x}}} t o t_{t} A_{t} z_{t} F_{2}^{\chi}\left(k_{t}^{\chi}, l_{t}^{x}\right)}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}
\end{aligned}
\]

As long as \(U_{h_{t} h_{t}} U_{l_{t}^{\times}}>U_{h_{t}} U_{l_{t}^{x}} h_{t} \Longleftrightarrow \frac{U_{h_{t} h_{t}}}{U_{h_{t}}} h_{t}>\frac{U_{l_{t}^{x} h_{t}}}{U_{l_{t}^{\times}}} h_{t}\)

\section*{Effects of TOT on TFP}
\[
s_{t}=\frac{U_{h_{t}}}{U_{l_{t}^{x}}} \operatorname{tot}_{t} A_{t} z_{t} F_{2}^{\times}\left(k_{t}^{\times}, I_{t}^{x}\right)
\]

By TFP production function:
\[
\begin{aligned}
& h_{t}=\left(\frac{s_{t}}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}=\left(\frac{\frac{U_{h_{t}}}{U_{t}^{x}}+o t_{t} A_{t} z_{t} F_{2}^{x}\left(k_{t}^{x}, \mid l_{t}^{x}\right)}{B A_{t} z_{t} \gamma}\right)^{\frac{1}{\gamma-1}}
\end{aligned}
\]

As long as \(U_{h_{t} h_{t}} U_{l \times}>U_{h_{t}} U_{l \mid x} \times h_{t} \Longleftrightarrow \frac{U_{h_{t} h_{t}}}{U_{h_{t}}} h_{t}>\frac{U_{t} \times h_{t}}{U_{l \mid} \times \frac{1}{x}} h_{t}\)
\[
\frac{d A_{t+1}}{d t o t_{t}}=\frac{d A_{t+1}}{d h_{t}} \frac{d h_{t}}{d t o t_{t}}<0
\]

\section*{Interest rate}

Interest rate is assumed to be given by
\[
r_{t}=r^{*}+p\left(d_{t+1}\right)
\]
with debt-elastic premium, where
- \(r^{*}\) is the world interest rate
- the function \(p(\).\() is assumed to be increasing and takes the\) form
\[
p(d)=\psi\left(e^{d-\bar{d}}\right)
\]
where \(\bar{d}\) is the steady state level of debt

\section*{Import, export and market clearing}

Import:
\[
m_{t}=a_{t}^{m}-y_{t}^{m}
\]

Export:
\[
x_{t}=\operatorname{tot}_{t}\left(y_{t}^{x}-a_{t}^{x}\right)
\]

Nontradables:
\[
a_{t}^{n}=y_{t}^{n}
\]

Final goods:
\(c_{t}+k_{t+1}^{m}+k_{t+1}^{\times}+k_{t+1}^{n}-(1-\delta)\left(k_{t}^{m}+k_{t}^{\times}+k_{t}^{n}\right)+\Phi_{m}\left(k_{t+1}^{m}-k_{t}^{m}\right)+\Phi_{x}\left(k_{t+1}^{\times}-k_{t}^{\times}\right)+\Phi_{n}\left(k_{t+1}^{n}-k_{t}^{n}\right)=H\left(a_{t}^{\tau}, a_{t}^{n}\right)\)
Then from households' budget constraint and by firms making zero profits:
\[
m_{t}-x_{t}+p_{t}^{\tau} d_{t}=p_{t}^{\tau} \frac{d_{t+1}}{1+r_{t}}
\]
which is the economy-wide resource constraint.

\section*{Competitive equilibrium}

A competitive equilibrium is

\section*{Competitive equilibrium}

A competitive equilibrium is
a set of prices \(\left\{r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}, w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}, p_{t}^{f}, p_{t}^{\tau}, p_{t}^{n}, r_{t}\right\}_{t=0}^{\infty}\),

\section*{Competitive equilibrium}

A competitive equilibrium is
a set of prices \(\left\{r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}, w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}, p_{t}^{f}, p_{t}^{\tau}, p_{t}^{n}, r_{t}\right\}_{t=0}^{\infty}\), an allocation \(\left\{k_{t+1}^{m}, k_{t+1}^{\times}, k_{t+1}^{n}, l_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}, A_{t+1}, y_{t}^{m}, y_{t}^{x}, y_{t}^{n}\right.\), \(\left.c_{t}, a_{t}^{m}, a_{t}^{x}, a_{t}^{n}, a_{t}^{\tau}, m_{t}, x_{t}, d_{t+1}\right\}_{t=0}^{\infty}\),

\section*{Competitive equilibrium}

A competitive equilibrium is
a set of prices \(\left\{r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}, w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}, p_{t}^{f}, p_{t}^{\tau}, p_{t}^{n}, r_{t}\right\}_{t=0}^{\infty}\), an allocation \(\left\{k_{t+1}^{m}, k_{t+1}^{\times}, k_{t+1}^{n}, l_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}, A_{t+1}, y_{t}^{m}, y_{t}^{x}, y_{t}^{n}\right.\), \(\left.c_{t}, a_{t}^{m}, a_{t}^{x}, a_{t}^{n}, a_{t}^{\tau}, m_{t}, x_{t}, d_{t+1}\right\}_{t=0}^{\infty}\), a sequence of multipliers \(\left\{\lambda_{t}\right\}_{t=0}^{\infty}\), and a tax system \(\left\{\tau_{t}\right\}_{t=0}^{\infty}\)

\section*{Competitive equilibrium}

A competitive equilibrium is
a set of prices \(\left\{r_{t}^{k m}, r_{t}^{k x}, r_{t}^{k n}, w_{t}^{m}, w_{t}^{x}, w_{t}^{n}, s_{t}, p_{t}^{f}, p_{t}^{\tau}, p_{t}^{n}, r_{t}\right\}_{t=0}^{\infty}\), an allocation \(\left\{k_{t+1}^{m}, k_{t+1}^{\times}, k_{t+1}^{n}, l_{t}^{m}, l_{t}^{x}, I_{t}^{n}, h_{t}, A_{t+1}, y_{t}^{m}, y_{t}^{x}, y_{t}^{n}\right.\), \(\left.c_{t}, a_{t}^{m}, a_{t}^{x}, a_{t}^{n}, a_{t}^{\tau}, m_{t}, x_{t}, d_{t+1}\right\}_{t=0}^{\infty}\), a sequence of multipliers \(\left\{\lambda_{t}\right\}_{t=0}^{\infty}\),
and a tax system \(\left\{\tau_{t}\right\}_{t=0}^{\infty}\)
which solve households and firms optimization problem
such that markets clear
given the initial conditions \(k_{0}^{m}, k_{0}^{\times}, k_{0}^{n}, d_{0}, A_{0}\), tot \(_{-1}, z_{-1}\)
and the stochastic processes \(\left\{\text { tot }_{t}, z_{t}\right\}_{t=0}^{\infty}\).

\section*{Functional forms}

Utility function:
\[
U\left(c, I^{m}, I^{x}, I^{n}, h\right)=\frac{\left[c-L\left(I^{m}, I^{x}, I^{n}, h\right)\right]^{1-\sigma}-1}{1-\sigma}
\]
where
\[
L\left(I^{m}, I^{x}, I^{n}, h\right)=\frac{\left(I^{m}\right)^{\omega_{m}}}{\omega_{m}}+\frac{\left(I^{x}\right)^{\omega_{x}}}{\omega_{x}}+\frac{\left(I^{n}\right)^{\omega_{n}}}{\omega_{n}}+\frac{(h)^{\omega_{h}}}{\omega_{h}}
\]

\section*{Functional forms}

Utility function:
\[
U\left(c, I^{m}, I^{x}, I^{n}, h\right)=\frac{\left[c-L\left(I^{m}, I^{x}, I^{n}, h\right)\right]^{1-\sigma}-1}{1-\sigma}
\]
where
\[
L\left(I^{m}, I^{x}, I^{n}, h\right)=\frac{\left(I^{m}\right)^{\omega_{m}}}{\omega_{m}}+\frac{\left(I^{x}\right)^{\omega_{x}}}{\omega_{x}}+\frac{\left(I^{n}\right)^{\omega_{n}}}{\omega_{n}}+\frac{(h)^{\omega_{h}}}{\omega_{h}}
\]
back
Production functions:
\[
\begin{aligned}
F^{m}\left(k^{m}, I^{m}\right) & =\left(k^{m}\right)^{\alpha_{m}}\left(I^{m}\right)^{1-\alpha_{m}} \\
F^{\times}\left(k^{x}, I^{x}\right) & =\left(k^{x}\right)^{\alpha_{x}}\left(I^{x}\right)^{1-\alpha_{x}} \\
F^{n}\left(k^{n}, I^{n}\right) & =\left(k^{n}\right)^{\alpha_{n}}\left(I^{n}\right)^{1-\alpha_{n}}
\end{aligned}
\]

\section*{Functional forms}

Utility function:
\[
U\left(c, I^{m}, I^{x}, I^{n}, h\right)=\frac{\left[c-L\left(I^{m}, I^{x}, I^{n}, h\right)\right]^{1-\sigma}-1}{1-\sigma}
\]
where
\[
L\left(I^{m}, I^{x}, I^{n}, h\right)=\frac{\left(I^{m}\right)^{\omega_{m}}}{\omega_{m}}+\frac{\left(I^{x}\right)^{\omega_{x}}}{\omega_{x}}+\frac{\left(I^{n}\right)^{\omega_{n}}}{\omega_{n}}+\frac{(h)^{\omega_{h}}}{\omega_{h}}
\]

\section*{back}

Production functions:
\[
\begin{aligned}
F^{m}\left(k^{m}, I^{m}\right) & =\left(k^{m}\right)^{\alpha_{m}}\left(I^{m}\right)^{1-\alpha_{m}} \\
F^{\times}\left(k^{x}, I^{x}\right) & =\left(k^{x}\right)^{\alpha_{x}}\left(I^{x}\right)^{1-\alpha_{x}} \\
F^{n}\left(k^{n}, I^{n}\right) & =\left(k^{n}\right)^{\alpha_{n}}\left(I^{n}\right)^{1-\alpha_{n}}
\end{aligned}
\]

CES composite goods aggregators:
\[
\begin{aligned}
& G\left(a_{t}^{m}, a_{t}^{x}\right)=\left[\chi_{m}\left(a_{t}^{m}\right)^{1-\frac{1}{\nu_{m x}}}+\left(1-\chi_{m}\right)\left(a_{t}^{x}\right)^{1-\frac{1}{\nu_{m x}}}\right]^{\frac{1}{1-\frac{1}{\nu_{m x}}}} \\
& H\left(a_{t}^{\tau}, a_{t}^{n}\right)=\left[\chi_{\tau}\left(a_{t}^{\tau}\right)^{1-\frac{1}{\nu_{\tau n}}}+\left(1-\chi_{\tau}\right)\left(a_{t}^{n}\right)^{1-\frac{1}{\nu \tau n}}\right]^{\frac{1}{1-\frac{1}{\nu \tau n}}}
\end{aligned}
\]

\section*{Calibration}
\begin{tabular}{|c|c|c|}
\hline Parameter & Description & Value \\
\hline \(\sigma\) & Coefficient of the relative risk aversion & 2 \\
\hline \(\beta\) & Subjective discount factor & 0.95 \\
\hline \(\omega^{m}\) & \(\frac{1}{\omega^{m}-1}=\) Importable goods labor supply elasticity & 1.455 \\
\hline \(\omega^{x}\) & \(\frac{1}{\omega^{x}-1}=\) Exportable goods labor supply elasticity & 1.455 \\
\hline \(\omega^{n}\) & \(\frac{1}{\omega^{n}-1}=\) Nontradables goods labor supply elasticity & 1.455 \\
\hline \(\omega^{h}\) & \(\frac{1}{\omega^{h}-1}=\) Technology sector labor supply elasticity & 1.455 \\
\hline \(\alpha_{m}\) & Capital share in importable goods sector & 0.33 \\
\hline \(\alpha_{x}\) & Capital share in exportable goods sector & 0.33 \\
\hline \(\alpha_{n}\) & Capital share in nontradable goods sector & 0.25 \\
\hline \(\nu_{m x}\) & The elasticity of substitution between exportable and importable absorption & 1 \\
\hline \(\chi m\) & The importables share parameter & 0.9 \\
\hline \(\nu \tau n\) & The elasticity of substitution between tradable and nontradable absorption & 0.5 \\
\hline \(\chi_{\tau}\) & The tradable share parameter & 0.36 \\
\hline \(\delta\) & Capital depreciation rate & 0.1 \\
\hline \(\psi\) & Parameter governing the debt elasticity of the country premium & 0.08 \\
\hline \(r^{*}\) & World interest rate & 0.04 \\
\hline \(\bar{d}\) & Steady state debt & 4.9 \\
\hline \(\overline{t o t}\) & Steady state TOT & 1 \\
\hline \(\rho_{\text {tot }}\) & TOT autocorrelation coefficient & 0.46 \\
\hline \(\sigma_{\text {tot }}\) & Standard deviation of TOT process innovation & 0.0166 \\
\hline \(\rho_{z}\) & Autocorrelation coefficient of technology shock & 0.72 \\
\hline \(\sigma_{\text {tot }}\) & Standard deviation of technology shock innovation & 0.0114 \\
\hline B & Shift parameter of the knowledge production function & 1 \\
\hline \(\gamma\) & Parameter of the knowledge production function & 0.4 \\
\hline
\end{tabular}

\section*{Model performance: impulse responses \(1 / 2\)}


\section*{Model performance: impulse responses \(2 / 2\)}




Wages in exportable





\section*{Total factor productivity shock process}

Total factor productivity shock process
\[
\ln \frac{z_{t}}{\bar{z}}=\rho_{z} \ln \frac{z_{t-1}}{\bar{z}}+\sigma_{z} \varepsilon_{t}
\]
where
- \(\bar{z}>0\) is the deterministic level of total factor productivity
- \(\rho_{z} \in(-1,1)\) is the serial correlation of the process
- \(\sigma_{z}>0\) is the standard deviation of the innovation to the TFP shock process
with estimated \(\rho=0.72, \sigma_{\text {tot }}=0.0114\)

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(l^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]
we have that
\[
\lambda_{t}=\frac{[c-L]^{-\sigma}(h)^{\omega_{h}-1}}{s_{t}}=\frac{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1}}{w_{t}^{x}}
\]

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]
we have that
\[
\lambda_{t}=\frac{[c-L]^{-\sigma}(h)^{\omega_{h}-1}}{s_{t}}=\frac{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1}}{w_{t}^{x}}
\]

Using exporters FOC we substitute out the wages:
\[
\frac{\left(h_{t}\right)^{\omega_{h}-1}}{\mu_{t} B A_{t} \gamma h_{t}^{\gamma-1}}=\frac{\left(I^{x}\right)^{\omega_{x}-1}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, l_{t}^{x}\right)}
\]

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]
we have that
\[
\lambda_{t}=\frac{[c-L]^{-\sigma}(h)^{\omega_{h}-1}}{s_{t}}=\frac{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1}}{w_{t}^{x}}
\]

Using exporters FOC we substitute out the wages:
\[
\frac{\left(h_{t}\right)^{\omega_{h}-1}}{\mu_{t} B A_{t} \gamma h_{t}^{\gamma-1}}=\frac{\left(I^{x}\right)^{\omega_{x}-1}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, I_{t}^{x}\right)}
\]

As tot goes up, RHS goes down

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]
we have that
\[
\lambda_{t}=\frac{[c-L]^{-\sigma}(h)^{\omega_{h}-1}}{s_{t}}=\frac{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1}}{w_{t}^{x}}
\]

Using exporters FOC we substitute out the wages:
\[
\frac{\left(h_{t}\right)^{\omega_{h}-1}}{\mu_{t} B A_{t} \gamma h_{t}^{\gamma-1}}=\frac{\left(I^{x}\right)^{\omega_{x}-1}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, I_{t}^{x}\right)}
\]

As tot goes up, RHS goes down \(\Longrightarrow\) LHS needs to go down

\section*{Mechanism explicitly - functional forms}

By households first order conditions:
\[
\begin{aligned}
{[c-L]^{-\sigma}(h)^{\omega_{h}-1} } & =\lambda_{t} s_{t} \\
{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1} } & =\lambda_{t} w_{t}^{x}
\end{aligned}
\]
we have that
\[
\lambda_{t}=\frac{[c-L]^{-\sigma}(h)^{\omega_{h}-1}}{s_{t}}=\frac{[c-L]^{-\sigma}\left(I^{x}\right)^{\omega_{x}-1}}{w_{t}^{x}}
\]

Using exporters FOC we substitute out the wages:
\[
\frac{\left(h_{t}\right)^{\omega_{h}-1}}{\mu_{t} B A_{t} \gamma h_{t}^{\gamma-1}}=\frac{\left(I^{x}\right)^{\omega_{x}-1}}{\operatorname{tot}_{t} A_{t} F_{2}^{x}\left(k_{t}^{x}, I_{t}^{x}\right)}
\]

As tot goes up, RHS goes down \(\Longrightarrow\) LHS needs to go down \(\Longrightarrow h_{t}\) needs to fall back

\section*{Mechanism}
- Terms of trade shocks affect the incentives to develop new and better technology
- Terms of trade improvement increases demand for labor in physical exportable goods production, as well as employment in the sector
- But it also decreases demand for labor in R\&D production, so that employment in this subsector drops
- This substitution effect has a negative impact on future TFP
- Terms of trade gains reduce technological effort!
re

\section*{New entrants}

Analysis for: Germany (2011-2012), Portugal (2008-2012), Spain (2007-2012)
\begin{tabular}{|c|c|c|c|}
\hline Model & \begin{tabular}{l}
(14) \\
\(\Delta T F P\)
\end{tabular} & \begin{tabular}{l}
(15) \\
\(\Delta T F P\)
\end{tabular} & \begin{tabular}{l}
(16) \\
\(\Delta T F P\)
\end{tabular} \\
\hline \(\triangle\) TOT & \[
\begin{gathered}
-1.2218^{*} \\
(.6020)
\end{gathered}
\] & \[
\begin{gathered}
-1.1935^{*} \\
(.6028)
\end{gathered}
\] & \[
\begin{gathered}
-1.3117^{*} \\
(.6391)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
New entrants \\
\(\Delta\) New entrants
\end{tabular} & & \[
\begin{gathered}
.0001428 \\
(.0001499)
\end{gathered}
\] & \[
\begin{aligned}
& -.0005477 \\
& (.0006245)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Sector dummies \\
Country dummies \\
Year dummies
\end{tabular} & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} \\
\hline Mean TFP Number of obs.
\[
R^{2}
\] & \[
\begin{gathered}
62.2994 \\
260 \\
0.2564
\end{gathered}
\] & \[
\begin{gathered}
62.2994 \\
260 \\
0.2596
\end{gathered}
\] & \[
\begin{gathered}
62.2994 \\
260 \\
0.1870
\end{gathered}
\] \\
\hline \multicolumn{4}{|r|}{Standard deviation in parenthesis. \({ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001\)} \\
\hline
\end{tabular}

\section*{Robustness - openness of the industry}
\begin{tabular}{c|c|c|c} 
Sample & Manufacturing & Manufacturing & Manufacturing \\
\hline Model & \((8)\) & \((17)\) & \((18)\) \\
& \(\Delta\) TFP & \(\Delta\) TFP & \(\Delta\) TFP \\
\hline\(\Delta\) TOT & \(-.2866^{* * *}\) & \(-.2924^{* * *}\) & .1562 \\
Share of exporters & \((.0770)\) & \((.0772)\) & \((.1307)\) \\
Share of exporters \(\times \Delta\) TOT & & \(7.0555^{* * *}\) & \(6.8286^{* * *}\) \\
& & \((1.5989)\) & \((1.5944)\) \\
\hline Sector dummies & YES & & \\
Country dummies & YES & YES & YES \\
Year dummies & YES & YES & YES \\
\hline \hline Mean TFP & 62.0282 & 62.3931 & YES \\
\hline Number of obs. & 2591 & 2563 & 62.3931 \\
\(R^{2}\) & 0.0766 & 0.1390 & 2563 \\
\hline
\end{tabular}

Standard deviation in parenthesis. \({ }^{*} p<0.05 ;{ }^{* *} p<0.01\); \({ }^{* * *} p<0.001\)

\section*{Robustness - lagged changes in TOT}
\begin{tabular}{|c|c|c|c|c|}
\hline Sample & Manufact & Manufact & Manufact & Manufact \\
\hline Model & \[
\begin{gathered}
\text { (8) } \\
\Delta \mathrm{TFP}
\end{gathered}
\] & \[
\begin{gathered}
(18) \\
\Delta \mathrm{TFP}
\end{gathered}
\] & \[
\begin{gathered}
(19) \\
\Delta \mathrm{TFP}
\end{gathered}
\] & \[
\begin{gathered}
(20) \\
\Delta T F P
\end{gathered}
\] \\
\hline \(\triangle\) TOT & \[
\begin{gathered}
\hline-.2866 * * * \\
(.0770) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline-.3059 * * * \\
(.0822) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline-.3697^{* * *} \\
(.0859) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline-.4180^{* * *} \\
(.0989) \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Lagged \(\triangle\) TOT (t-1) \\
Lagged \(\Delta\) TOT (t-2) \\
Lagged \(\Delta\) TOT (t-3)
\end{tabular} & & \[
\begin{gathered}
.0469 \\
(.0797)
\end{gathered}
\] & \[
\begin{gathered}
.0560 \\
(.0836) \\
-.1792^{*} \\
(.0840)
\end{gathered}
\] & \[
\begin{gathered}
\hline .0797 \\
(.0932) \\
-.1888^{*} \\
(.0903) \\
.0692 \\
(.1043)
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Sector dummies \\
Country dummies \\
Year dummies
\end{tabular} & \[
\begin{aligned}
& \text { YES } \\
& \text { YES } \\
& \text { YES }
\end{aligned}
\] & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} & \begin{tabular}{l}
YES \\
YES \\
YES
\end{tabular} \\
\hline \begin{tabular}{l}
Mean TFP \\
Number of obs.
\[
R^{2}
\]
\end{tabular} & \[
\begin{gathered}
62.0282 \\
2591 \\
0.0766
\end{gathered}
\] & \[
\begin{gathered}
62.0282 \\
2591 \\
0.1387
\end{gathered}
\] & \[
\begin{gathered}
62.0282 \\
2591 \\
0.1278
\end{gathered}
\] & \[
\begin{gathered}
62.0282 \\
2591 \\
0.1182
\end{gathered}
\] \\
\hline
\end{tabular}```

