DÉVELOPPER ET ÉVALUER LA CRÉATIVITÉ
ET L’ESPRIT CRITIQUE
DANS L’ÉDUCATION

Stéphan Vincent-Lancrin

Analyste senior, Chef de projet et Chef de division adjoint

Centre pour la Recherche et l’Innovation dans l’Enseignement,
Direction de l’Education et des Compétences
education for innovation
Skills and education for innovation
« 21st Century Skills »
Critical skills for the most innovative jobs (according to tertiary-educated workers)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Likelihood (odds ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>come with new ideas/solutions</td>
<td>3.90</td>
</tr>
<tr>
<td>willingness to question ideas</td>
<td>3.00</td>
</tr>
<tr>
<td>present ideas in audience</td>
<td>2.81</td>
</tr>
<tr>
<td>alertness to opportunities</td>
<td>2.71</td>
</tr>
<tr>
<td>analytical thinking</td>
<td>2.60</td>
</tr>
<tr>
<td>coordinate activities</td>
<td>2.58</td>
</tr>
<tr>
<td>acquire new knowledge</td>
<td>2.51</td>
</tr>
<tr>
<td>mobilize capacities of others</td>
<td>2.42</td>
</tr>
<tr>
<td>make your meaning clear</td>
<td>2.36</td>
</tr>
<tr>
<td>master of your own field</td>
<td>2.36</td>
</tr>
<tr>
<td>write reports or documents</td>
<td>2.35</td>
</tr>
<tr>
<td>write and speak a foreign language</td>
<td>2.20</td>
</tr>
<tr>
<td>use computers and internet</td>
<td>2.19</td>
</tr>
<tr>
<td>work productively with others</td>
<td>2.19</td>
</tr>
<tr>
<td>use time efficiently</td>
<td>2.15</td>
</tr>
<tr>
<td>perform under pressure</td>
<td>2.09</td>
</tr>
<tr>
<td>negotiate</td>
<td>2.08</td>
</tr>
<tr>
<td>knowledge of other fields</td>
<td>2.05</td>
</tr>
<tr>
<td>assert your authority</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Source: Avvisati, Jacotin and Vincent-Lancrin (2013), based on REFLEX and HEGESCO data
What individual skills should education systems foster?

- **Technical skills** (know-what and know-how)
- **Behavioural and social skills** (Self-confidence, energy, perseverance, passion, leadership, collaboration, communication)
- **Creative and critical thinking skills** (Observation, curiosity, making connections, imagination, multiple perspectives...
fostering an assessing creativity and critical thinking
• Need for a common language, social representation and guidance about what some desired skills actually mean

• Skills that are not assessed are not taught consistently, but teachers need to teach what they assess

• There is generally little space for students to develop and demonstrate creativity and critical thinking as part of their usual disciplinary learning

• Start a process of change: pilot, prototype and develop pedagogical resources as a proof of concept for other teachers – before validation and possibly scale up (second phase)
Participation in primary and secondary education

• Participation in 11 countries overall
 – Brazil, France (3), India, Hungary, Netherlands, Russia, Slovakia, Spain, Thailand, United Kingdom (Wales), United States (3)

• 1st round (2015-16, 2016) in 9 countries
 – Brazil, France (3), India, Hungary, Netherlands, Russia, Slovakia, Thailand, United States (3)

• 2nd round (2016-17) in 9 countries
 – Brazil, France, India, Hungary, Russia, Spain, Thailand, United Kingdom (Wales), United States (2)
A pedagogical toolkit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Specific for each domain</td>
<td>Specific for each domain</td>
<td>For each domain</td>
</tr>
<tr>
<td>Levels of progression</td>
<td>Designed to test dimensions and levels of progression</td>
<td>Designed to prepare for the assessment</td>
<td>As examples of different skill levels</td>
</tr>
</tbody>
</table>
Starting point: 5 creative habits of mind (21st century skills)

Source: Lucas, Claxton and Spencer (2013)
<table>
<thead>
<tr>
<th>INQUIRE</th>
<th>CREATIVITY (Coming up with new ideas and solutions)</th>
<th>CRITICAL THINKING (Questionning and evaluating ideas and solutions)</th>
</tr>
</thead>
</table>
| | • Feel, empathise, observe, describe relevant experience and information
 | • Explore, seek and generate ideas | • Understand context/frame and boundaries of the problem
| | | • Review alternative theories and opinions and compare/find perspectives on the problem |
| IMAGINE | • Make connections, integrate other disciplinary perspectives
 | • Stretch and play with unusual/risky/radical ideas | • Identify strengths and weaknesses of evidence, arguments, claims and beliefs
| | | • Challenge assumptions, check accuracy, analyse gaps in knowledge |
| DO / SHARE | • Envision / Express / Produce / Prototype new product / solution / performance
 | • Appreciate the novelty of solution and/or possible consequences | • Appraise / Base / Justify opinion/products on logical, ethical or aesthetic criteria/reasoning
| | | • Acknowledge own bias (as perceived by others) and uncertainty/limits of endorsed opinion/solution |
Uses of the rubric

• To develop new pedagogical activities

• To improve existing pedagogical activities

• To develop new rubrics (domain-specific, to assess students, self-assessment, etc.)

• To assess student work

• To keep in mind the importance of these competences
a monitoring framework with a quasi-experimental design
Contextual data collection

B1. Subject-based assessment
- Standardised assessment of academic achievement
 - (maths and science; visual arts and music)

B2. Creativity assessment
- Standardised test for creativity (EPoC)
 - (domain-specific)

B3. Survey questionnaires
- School principals
- Teachers
- Students

B4. Interviews / focus groups
- Teachers
- Students
What factors influence the outcomes?

- Pre-tests and questionnaires at the beginning of the intervention:
 - Are differences related to baseline in achievement, creativity, to student beliefs, to pedagogies, to socio-economic background, etc.?

- Observations and discussions within the network
What effects of the intervention?

• Measures after the intervention:
 – Post-tests and questionnaires
 – Qualitative observations of pedagogies
 – Interviews

• Matched control group (with some kind of intervention as well)
examples
effects on teaching, learning
Primary education: I have to use my imagination
Primary education:
I have to make connections between different school subjects

Control	Intervention
Pre | Post
-3.4 | +3.2
Primary education: I have to look for several explanations
Primary education: I do NOT only learn what I am interested in
Primary education: interest in maths and science

Increase in the percentage of students interested between pre and post.
Out of school effects
Primary education: I try to explore new things
Primary education:
I am curious about many different things
standardised tests
Primary education:
Performance in maths and science tests

Control

Intervention

Pre

Post

+5.0

+10.9
Primary education: Performance in visual art and music test

- Pre test VAM: 64
- Post test VAM: 66

Difference:
- Control: +1.7
- Intervention: +3.47
examples
• Launch a new strand in tertiary education

• End of pilot phase in 2018

• Design of a validation phase based on developed resources
Stephan.Vincent-Lancrin@oecd.org

THANK YOU

www.oecd.org/edu/innovation
www.oecd.org/edu/internationalisation
www.oecd.org/edu/universityfutures