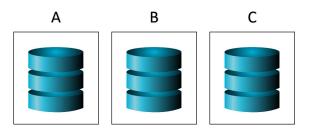
GMM across Unmerged Data Sets

Eric Bartelsman¹² & Richard Bräuer²³


¹Tinbergen Institute ²VU Amsterdam ³Halle Institute of Economic Research

October 8, 2019

▲□▶▲@▶▲≣▶▲≣▶ ▲ ■ うらぐ

• ••	

Problem

 Researchers often face confidential data they are not allowed to access without anonymization

(4月) (4月) (4月)

- Patient Data
- Employer-employee Data
- Individual Firm Data

▶ ...

Current Solutions

Micro Moments Databases

- Collect nonconfidential group info (Bartelsman & Barnes 2004; Bartelsman, Hagsten & Polder 2018)
- Allow analysis at level between micro and macro
- Observations correspond to groups of individual firms

Two sample IV

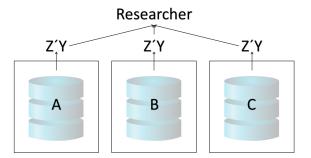
- Estimation with two different samples describing the same process (Angrist & Krueger 1992)
- Instruments, Z and outcomes Y in sample 1
- ► End. variables X and instruments Z in sample 2

New estimator:

Arbitrary linear GMM spanning multiple unmerged data silos

Estimator

Introduction 00●	Estimator 000000	Conclusion O


Example: CompNet

- CompNet collects micro moments from representative firm data
- However: Some questions are hard to answer with moments
 - What effects do EU subsidies have on the targeted firms?
 - What is the return of investment on R&D for the firm?
 - What is the cross-country production function in a sector?
 - ► ...
- Firm level regression would be most straightforward

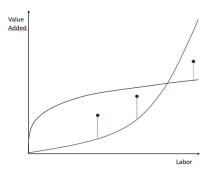
Introduction	Estimator	Conclusion
000	●000000	O

Data split in several sets with Z,X & Y (CompNet)

$$\blacktriangleright \hat{\boldsymbol{\beta}} = (\boldsymbol{Z}'\boldsymbol{X})^{(-1)}(\boldsymbol{Z}'\boldsymbol{Y})$$

Introduction	Estimator	Conclusion
000	0.00000	0

Data split in several sets with Z,X & Y (CompNet)

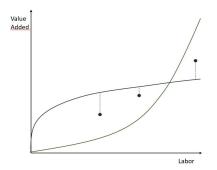

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{Z}'\boldsymbol{X})^{(-1)}(\boldsymbol{Z}'\boldsymbol{Y})$$

$$(\mathbf{Z'Y}) = \begin{bmatrix} \sum_{i}^{N} (1 * y_{i}) \\ \sum_{i}^{N} (z_{i}^{1} * y_{i}) \\ \sum_{i}^{N} (z_{i}^{2} * y_{i}) \\ \dots \end{bmatrix} = \underbrace{\begin{bmatrix} \sum_{i}^{K} (1 * y_{i}) \\ \sum_{i}^{K} (z_{i}^{1} * y_{i}) \\ \sum_{i}^{K} (z_{i}^{2} * y_{i}) \\ \dots \end{bmatrix}}_{\text{Data Source A}} + \underbrace{\begin{bmatrix} \sum_{K}^{N} (1 * y_{i}) \\ \sum_{K}^{N} (z_{i}^{1} * y_{i}) \\ \sum_{K}^{N} (z_{i}^{2} * y_{i}) \\ \dots \end{bmatrix}}_{\text{Data Source B}}$$
(1)

Introduction	Estimator	Conclusion
000	⊙o●⊙⊙⊙	O

Cross-country-TFP-estimation

 TFP only comparable if derived from the same production function



- 4 E 6 4 E 6

Introduction	Estimator	Conclusion
000	○○○●○○	O

Cross-country-TFP-estimation

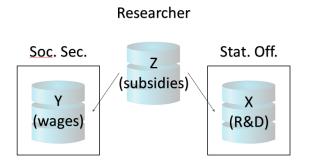
 TFP only comparable if derived from the same production function

 Current round contains first cross-country comparable TFP from an estimated production function (experimental)

Introduction	Estimator	Conclusion
000	000000	0

Data split with Y & X in different data sets

►
$$\hat{\boldsymbol{\beta}} = (\boldsymbol{Z}'\boldsymbol{X})^{(-1)}(\boldsymbol{Z}'\boldsymbol{Y})$$


$$(oldsymbol{Z}'oldsymbol{Y}) = egin{bmatrix} \sum_{i}^{N} (1 * y_i) \ \sum_{i}^{N} (z_i^1 * y_i) \ \sum_{i}^{N} (z_i^2 * y_i) \ \dots \end{bmatrix}$$

$$(\mathbf{Z}'\mathbf{X}) = \begin{vmatrix} \sum_{i}^{N} (1 * x_{i}) \\ \sum_{i}^{N} (z_{i}^{1} * x_{i}) \\ \sum_{i}^{N} (z_{i}^{2} * x_{i}) \\ \dots \end{vmatrix}$$

GMM across Unmerged Data Sets

Introduction	Estimator	Conclusion
000	00000●	O

Example: Do R&D subsidies affect workers'/inventors' wages?

Conclusion

- Problem: Unmergeable data sets prevent regressions
- Contribution: New estimator that bridges separate data silos
- Application: Estimation of Cross-Country Production Function
- Code for the estimation: (soon)

Thank you for your attention

GMM across Unmerged Data Sets

Introduction	Estimator	Conclusion
000	000000	O

Cross-country-TFP-estimation

 TFP only comparable if derived from the same production function

Table: inputs, outputs and TFP for the example firms

Firm	labor	capital	output	TFP	coeff(I)	coeff(c)	country
Firm 1	25	16	20	1	$\frac{1}{2}$	$\frac{1}{2}$	POR
Firm 2	25	16	20	0.94	$\frac{2}{3}$	$\frac{1}{3}$	ROM
Firm 3	25	4	64	0.78	$\frac{2}{3}$	$\frac{1}{3}$	ROM

 Current round contains first cross-country comparable TFP from an estimated production function (Experimental)